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Abstract:

In this paper, a new dynamic model for continuum robot manipulators is derived. The dynamic
model is developed based on the geometric model of extensible continuum robot manipulators with
no torsional effects. The development presented in this paper is an extension of the dynamic model
proposed in [19] (by Mochiyama and Suzuki) to include a class of extensible continuum robot
manipulators. Numerical simulation results are presented for a planar 3-link extensible continuum
robot manipulator.

1 Introduction

In most engineered systems, the behaviour of the system is required to be accurately modelled to
improve the performance of the system. In many applications, design simulation and proposed
control algorithms require more than just a simple kinematic or dynamic model [2]. Not only
an accurate model but a real-time calculation of the dynamic model is also needed for control
algorithms or simulations.

The desire to enhance the performance of robot manipulators resulted in a renewed interest in
continuum robots [22]. To our best knowledge, the concept of continuum robot was first introduced
in the 1960’s [1]. Numerous designs of continuum robots were presented in [4], [6], [9], [12], and
[15]. Recently, there has been an increasing interest in designing ‘biologically inspired’ continuum
robots. Some of these designs are mimicking trunks [8], [25], tentacles [17], [21], [24] and snakes [9].
Several commercial implementations have appeared (i.e., [3] and [10]).

The results in this paper are motivated by and are applicable to the OCTARM continuum ma-
nipulator. The OCTARM manipulator is a biologically inspired soft robot manipulator resembling
an elephant trunk or an octopus arm [18]. The OCTARM, shown in Figure 1, is a three-section
robot with nine degrees of freedom. Aside from two axis bending with constant curvature, each
section is also capable of extension. The bending and extension capabilities of OCTARM makes
it suitable for a wide variety of physical applications ranging from whole arm grasping of vari-
ous shapes of payloads to navigation of unstructured environments [17] and provides an increased
workspace compared to its inextensible counterparts [26]. In [13], Jones and Walker presented a
kinematic model for a general class of continuum robots. While the kinematic model proposed in
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Honda Corporation Grant, and by the Defense Advanced Research Projects Agency (DARPA), Contract Number
N66001-C-8043.



[13] is applicable to OCTARM, none of the dynamic models proposed in current literature meets
the demands. The modelling of dynamic behaviour of extensible (variable length) continuum robot
manipulators is an important open research area.

There has been some previous research in dynamic modelling of biologically inspired robot
manipulators. In two recent papers [14], [16], the authors presented dynamic models for snake-like
robots. However, in both cases, hyper-redundant serial rigid-link systems are considered. This
does not model the continuous nature of continuum robot shapes. In [27], researchers presented
a 2-D dynamic model for the octopus arm. However, while allowing extensibility, the model is
based on an approximation (by a finite number of linear models) to the true continuum case. In
[6], Chirikjian and Burdick considered extensibility of hyper-redundant manipulators. A kinematic
model was presented based on the modal approach introduced in [7] and a dynamic model was
proposed in [5]. In [11], Ivanescu et. al proposed a dynamic model for an extensible tentacle arm.
However, the dynamic model proposed in [5] for 3-D case remains in integral differential form, which
makes it problematic for real-time control and the dynamic model suggested in [11] was computed
only as an approximation in closed form. In [19] and [20], Mochiyama and Suzuki presented a
three-dimensional dynamic model for an inextensible (constant length) continuum manipulator.
Mochiyama and Suzuki considered the continuum robot as a combination of slices where each slice
is considered to be a rigid link. To derive the dynamic model, limit of a serial rigid chain model
is obtained as the kinematic degrees of freedom goes to infinity. However, the suggested dynamic
model is in integral form and also does not include extensible manipulators.

In this paper, the work in [19] is modified and extended in order to include the important class
of extensible continuum robot manipulators. A geometric model of a 3-link extensible continuum
robot manipulator with a circular cross-section is considered (see Figure 2). For simplicity, the
geometric model is assumed to have no torsional effects. After presenting the system model and
model properties, the kinetic energy of a slice of the continuum robot is evaluated. The total kinetic
energy of the manipulator is obtained by utilizing a limit operation (i.e., sum of the kinetic energy of
the slices). By utilizing a Lagrange representation, the dynamic model of a planar 3-link extensible
continuum robot manipulator is obtained. It is also proved that the skew-symmetry property is

satisfied for the presented dynamic model (i.e., (M (q) — 2V (g, q)) is skew-symmetric). Numerical
simulation results are presented for a planar 3-link extensible continuum robot manipulator.

2 System Model and Properties

The geometric model of a 3-link extensible continuum robot manipulator utilized in this paper is
presented in Figure 2. This geometric model is a good model of OCTARM, a soft continuum robot
manipulator, which is shown in Figure 1.

The following convention, which is adopted from [19], will be adhered throughout the following
development. The matrix, °® (0) € SO (3) represents the orientation matrix of the base frame, and
% (0) € R? represents the position vector of the origin. The matrices, °® (0,t), ¢® (0,t) € SO (3)
represent the orientation matrices of the extended Frenet frame at o relative to the base frame
and ¢® (£,t) € SO (3), respectively. The vectors, °p (0,t), ép(0,t) € R? represent the position
vectors of the point o relative to the origin as viewed from the base frame and ¢® (£, t), respectively.
For simplicity, the notation of ® (0,t) and p (o, t) will be preferred instead of ?® (o, t) and 7p (o, t)
throughout the rest of the paper. The section lengths of the manipulator are denoted as d; (t) € R,
i=1,2,3, and k(0,t) € R represents the curvature of the point o. The total length of the robot
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Figure 1: Octarm Continuum Robot (version 5.2) in Clemson University Mechatronics Laboratory

manipulator, denoted as d (t) € Ry, is equal to the following
d(t) 2 dy(t) +dy(t) +ds(t). (1)
The system model is assumed to satisfy the following properties.

Property 1 The curvature x of each point ¢ of the manipulator is a function of both time and o.
Consistent with the OCTARM, it is assumed that the curvature of a link is only function of
time (i.e., Kk (0,t) = K; (t) if 0 is a point on Link 7, ¢ = 1,2,3). It is assumed in the analysis
that the curvature is always non-zero (i.e., k (o,t) # 0 V (0,1)).

Property 2 In Figure 2, p(£,t) € R? is the position vector of point £ of the backbone curve and
p. (€,t) € R3 is the position vector of the center of mass of the slice at £&. Again consistent with

the OCTARM, it is assumed that p (§,¢) and p. (,t) coincide (i.e., Ap (§) = [ 0 00 }T)

Property 3 The mass density of the robot manipulator is uniform. The line mass density of the
slice, denoted as m (o, t) € R, is defined as follows

m
t) = —— 2
me.t) = 7o )
where m € R is the total mass of the manipulator.

Property 4 Since the system is assumed to be planar with no torsional effects, then the system
has no gravitational potential energy.

3 Dynamic Modelling

The orientation matrix of the extended Frenet frame at o with respect to the base frame, denoted
as '@ (o,t), is given as follows

cos (oK (0,t)) 0 —sin(ok(o,t))
0P (0,t) = 0 1 0 (3)
sin (ok (0,t)) 0 cos(ok (0,t))
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Figure 2: Geometry of a 3-Link Extensible Robot Manipulator



The orientation matrix given in (3) is equal to the orientation matrix provided in Equation (8) of
[13] with the angle of curvature is equal to zero (i.e., ¢ (¢,t) = 0). The change of the orientation

matrix along the manipulator is characterized by the following equation

0% (o,t
2ol et o) @
o

where a* (0,t) € R33 is the skew-symmetric matrix of the frame rate vector a (o,t) € R3. After
utilizing (3) and (4), a (o,t) and a* (0,t) can be defined as follows

0 0 —k(o,t)
a(o,t)=| —k(o,t) , a*(o,t) = 0 0 0 . (5)
0 k(o,t) 0 0

The position vector of the point o from the origin p (0) with respect to the base frame, denoted as
% (0,t), is evaluated as follows

o (0, 1) = / " 0% (n, 1) exdn (6)

where ey, £ [ 1 00 }T. The orientation matrix of the extended Frenet frame at o relative to
® (&,t), denoted as ¢ (o, t), is calculated as follows

@ (0,t) £ 20T (¢,t) "D (0,t). (7)

The position vector of the point o relative to the origin as viewed from ® (£,¢), denoted as *p (o, t),
is evaluated as follows

p(o,t) = 0T (&1) "p(o,t). (8)

The internal variable vector at o which is denoted as 6 (o, t) € R? is defined as follows
A ! (Ua t)
o= | 70 o

where [ (0,t) and k (0, t) reflect the extension and curvature of the model. The extended axis matrix
t

A(6(0,t)) € RS2 is defined as follows
- 0 0 ]T

A1 000
A(Q(o,t))—[o 000 —1 0 (10)
So far, the main extension of this development over [19] is the definition of the internal variable
vector. The extensibility of our model is reflected by designing 6 (o,t) to include [ (o,t). This
design allows the model to extend in each section, which results in a variable total length, while
the geometric model presented in [19] had a constant total length. As a consequence of this new
design for the internal variable vector, the extended axis matrix is modified accordingly. The adjoint
matrix Adys,. € RO in terms of the rigid body transformation g (o,7n,t) € SE (3) is defined as
follows

a | 7@, t) (p*(n,t) = “p*(o,t) P (n,t)
Adg(a,n,t) — 03><3 0—@ (7], t) (]_]_)



where 03,3 € R3*3 is a matrix of zeros. The kinetic energy of the slice at o (see Figure 2) is given
as follows [19]

96 (¢, 1)
ot

1 [ 067 (n,0)—1 _
K025 [ [ UAT (00) Adl M (0,0) Adyoen A6, P Danas (12)
0 O

where M (o,t) € R%*6 is the inertia matrix of the slice at o which is defined as follows

A m(o,t) I3 —m(o,t) Ap* (o)
e oo " 19)
where m (0,t) Ap (o) € R? is the first moment of inertia of the slice, I (¢) € R3*3 is the inertia
tensor of the slice, and I3 € R3*3 is the standard identity matrix. The inertia tensor of the slice is
assumed to be of the following form

.~ mr? 1 00
00O

where r is the radius of the circular cross-section of the robot manipulator. After utilizing Properties
1 and 2, the inertia matrix of the slice at o can be evaluated as follows

M(ot)=diag{ % , % , = %5 0,0} (15)
Due to the piecewise definition of the curvature (see Property 1), the kinetic energy of the slice at
o which is formulated by (12) will not be evaluated explicitly. However, by sliding the slice at o
over every section of the manipulator, the kinetic energy of every slice at o can be calculated. The
expression in (12) can be rewritten as follows

K (0.t) = / / 1(on,&,t) dnde (16)



where I (o,n,&,t) is the integrand defined as follows

I(om61) 2 {@ £)1(1,1) cos (€ (&, 1) = (1,1) (17)
+i(E )k {( t))<xw(£%(£,ﬂ)
1
( )cos(&i(ﬁ, t) — ok (o,t)) — D) COS(S%(S,t)—n%(n,t))]

0.0 | (g~ w0

b )cosw(a 0= 1.0) = gy <os 6 (6.0) ~ e 1)
60500 | (e reg  Fep) )
Kﬁ(l 5t é )(( 5 ) e D)
g 1 (6 —on(e)

1 1

S o) LT eos(or(ost) = (0, 1))

o (e ) ||

The total kinetic energy of the system is defined as follows

d(t)

K@é/Kwﬁw (18)

0

where K (o,t) is the kinetic energy of the slice at 0. The upper limit of the integral in (18) is the
total length of the manipulator, which is a function of time as a result of the extensible nature of our
geometric model. However, the total length of the manipulator in [19] was constant. To facilitate
the subsequent development, the total kinetic energy of the system will be rewritten as follows

d1 (t) do (t) ds (t)
K (t)= / K, (o,t)do + / K; (o,t)do + / Ks(o,t)do (19)
0 dl(t) dz(t)

where K (0,t) is the kinetic energy of slice o when o is a point on Link i, ¢ = 1,2, 3. To facilitate
the subsequent development I;;; (0,7, &,t) is defined as follows

Lij (0,m,6,8) 2 I (0,1,&,1)], ¢ Link i €Link j¢ € Link k (20)

where for any s € Link i means [ (s) = d; (t) and & (s) = &; (t). After utilizing (16), (19), (20) along
with Property 1, K; (0,t), i = 1,2,3 can be evaluated as follows

K, = 0/ 0/ T (0,7, €, 8) dndé (21)



dl(t)
K, (a,t):/ /1211 (o,m,&,t) dnd
0 0

+//I212U'flftd77d§
0

dy (t

=

di(t)
K3 (o,t) = 0/ 0/1311(0,7],§,t)dnd§+/

I331 (0, m,&,t) dnd§ + /

[

di(t)
+ 1221 (O' n, f t) d’l]df
/']

()

/ / Ineo (0,m, &, t) dnd€ (22)

dy (t dy (t

di(t) da(t)

/ Ton (0,1, €, ) dndé
0 dl(t)
da(t) di(t)

/ I315 (0, m, &, t) dndg

da(t) di(t) O
do (t) do (t) da (t) o
+ Tyos (0, €, ) ddé + / / Tysa (0, &, 1) dnde

+ Is33 (a,n,ﬁ,t)dndﬁ-

d1 (t) do (t)
o da(t)

da(t) d1(2)

+/ 0/1313 (0,n,§,t)dnd§+/ /1323(0777a§at)d77d§

(23)

To facilitate the subsequent development the joint position vector ¢ (t) € RS is defined as follows

g2 [d dy d3 K1 Ry KS}T' (24)

After utilizing (17), (19)-(23), the total energy of the system can be evaluated as follows

K (t)

21

L\ 2 ..
+Kd2d2 <d2> + Kd‘2d3d2d3 + K

I gy i+ K dafon + Ky

3R1

.\ 2 .o .o .
Kd'ldl (dl) + Kd1d2d1d2 + Kd1d3d1d3 + Kdmldl/{l + Kd .

dofey + K

1H2d1'£€2 + Kd1k3d1/%3 (25)

2F2

. . N\ 2
ot + Ky oty + K, (dg)

dsfss + Ki, s, (/"61)2 + Ky iok1ho + Kp paR1R3
+KI:€2I%2 (/2&2)2 + Kfizfﬁs".iy%?» + Kfcsics (/253)2 .

In (25), K 4, with ¢; and ¢; being entries of ¢ (), are defined in Appendix A.

4 Lagrangian Representation

The Lagrangian of the system is defined as follows

L(t) 2 K (t)

co



where Property 4 was utilized. Euler-Lagrange equations of motion are defined as follows [23]

4oL oL
dtdg;  0qg;

=7 ,i=12..6. (27)

After utilizing (27), the dynamic model of the system is developed as follows

M(q)G+V(gq)q=r(t) (28)

where M (q), V (q,q) € R%*% are the inertia matrix and centripetal-coriolis terms, respectively, and
7 (t) € R® is the control input. The inertia matrix M (g) and the centripetal-coriolis terms V (g, ¢)
are defined as follows

2Ry Kid,  Kidy  Kiay  Kijry, Ky
I]iydl CZ2 i{Kdg CZQ g(‘[(ég CZS §d2 K1 I[gdg Ko I[gdg K3
M q é dlczg, szdg, ngdg, CZ3I'£1 d3f£2 d.3l'i3 29
( ) Kdlkl Kdgf@l Kdgkl 2J:(""/I""/l Ki'ﬂf%z K’.ilf%/?; ( )
Kdlfﬁz Kdzl'iz Kdg,f%g K"?l"'ﬁ 2K"-€2":€2 K":@2"‘-€3
L Kdllfig, Kdzftg Kdlg,fig K"fl K3 K"'-C2"“€3 2K":€3":€3

‘/11 ‘/12 ‘/13 V14 V15 ‘/16
Vo Vao Vay Var Vas Vag
Var Vag Vas Vau Var V4

V ,- é 31 32 33 34 35 36
(@D=1 v Vi Vis Vi Vis Vi
Vo Ves Vi Var Vis Vig
Vo Vis Vs Ve Vis Vig

(30)

where the entries of the inertia matrix and centripetal-coriolis terms are defined in Appendices A
and B, respectively.

Remark 1 The inertia matriz M (q) and the centripetal coriolis terms V (q,q) defined in (29) and
(30) with entries defined in Appendices A and B satisfy the following property:

¢7 (M _ 2v) £=0, Ve e RS, (31)

When, the matrix (M — 2V) is skew-symmetric, then (31) is satisfied. The proof of (M — 2V)
being skew-symmetric is provided in Appendiz C.

5 Numerical Results

To underline the validity of the proposed dynamic model, two numerical simulations are presented.
In both simulations, the model presented in (28)-(30) is utilized. The model is implemented in
Matlab 7.0. In the first simulation, to illustrate the extensibility in the model, the system is fed
with 73 (¢) being a step function with an amplitude of 10~* [Nm)] for a duration of 5 seconds, while
the other entries of 7 (t) are set to zero. While the changes in the curvatures are negligible, the
section lengths are presented in Figure 3. From Figure 3, it is clear that the third section extends
appropriately as expected. In the second simulation, to illustrate both bending and extending
capabilities as well as the dynamic behaviour of the model, the system is fed with the control input

9
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Figure 3: The section lengths for the first simulation

presented in Figures 4 and 5. From Figure 6, it can easily be seen that the third section is extended,
and from Figure 7, it is clear how the third section is bent. The changes in ds, k; and ks illustrate the
results of the dynamic input and coupling between the sections. However, it should be noted that
the movements observed in k; and ks are negligible (i.e., the radii of curvature are approximately
10 [m] for both cases). Aside from the presented results, also the dynamic model is observed for
commonly used properties in the performed simulations. In both cases, the dynamic model satisfied
the skew-symmetry property, and the inertia matrix always has a positive determinant as expected.

6 Conclusions

A novel dynamic model for planar extensible continuum robot manipulators was derived. First, the
kinetic energy of a slice of the continuum robot was evaluated. Then, the total kinetic energy of the
manipulator was obtained by utilizing a limit operation (i.e., sum of the kinetic energy of all the
slices). Finally, the dynamic model of a planar 3-link extensible continuum robot manipulator was
derived, by utilizing the Lagrange representation. Numerical simulation results were presented.
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Appendices

A The Entries of the Inertia Matrix

The entries of the inertia matrix are defined as follows'

m
didy = d/i% T20

m
Kdld'2 = E{T‘g—i"f’g —7‘23—7‘24}

m
Kd‘lczg = a {rie +r10 — 725}

K1 Rg R3

2 2 do
Kijw = 54— —Ts— —To— To5 — dary + —Toy4
d K9 K9 /€3d3 K9

ds —d 1 1 1
+ 5 27"23 — —d2d3 (— — —) sin (dllﬂll)}

Kods R1 R3 )

m 2 2 1
K, =—7_— I —d
diks = g { s T'16 e T10 + o 25 37‘4}

m
dods dligrm

m
Kiyi, = 7 Arzs = ru}

— T+ —37T5 + T26 — ——T13 + —T23 + —T13
K1 Ry /€3d3 K9 K1 K1

(dl (dy + do + d3) 1 d1d3> 1
2 + -

m 1 dl dl Cll 1 dl
Kczzl'il = E {

rs ——T9
K1

M sin ((dl + dg) /12)}

RoK1

K1 KJ% Ko K3

dq dy (ﬂ + @) sin (dy k2) —

R1 Rg

!The calculation of the these terms was done by MAPLE 9.5.
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d 1 2 1 1
Kdzfﬁz = % {—d2 To6 + —37"6 — T2 — 3T+ dad3k1 k2 <— T8 (41)

K3ds K3 K5 K5 K3 K2

m dg 42
Kd?k?’:d—/@,{/@_grﬁ_r%jL%H} (42)

m
dsds = —ng T22

d
m [ di 1 1 L 1.1 [’r’ — Zsin ((dy + dy) "13)] } (44)
Kd-?),._i1 = " {K—g’fﬁ - K—lho - /-6_1“6 + e 25 + d1 P 14 K3 ((
m [ do 1 1 i_i —@Sin di+d 53)1} (45)
Kd~3,.62 :E{ﬁ_%r7_li_2rz6+/i_2rll+d2 (/12 P T14 rs ((dy 2)
m
P PR e (46)
Kd3n3 d/ig { "3 22}
1 1
m dl d1 dl é d2 <_ _ _) r
S S Toq + Tos + —T4 + A7K1 8
Ky iy P {H1K2d37‘23 + rra (do + d3) 24 rrriads 25 Py 1 Ko K1
11 1 1 di (dy @_L*d?’)sm dyrir)
—|—d§/<al (K—g — K—1> 16 + K—%h + ﬁ—zll’f‘zo + H% (@ + K3 Ky ( 1
d d d d dz + do d;
—i—d% =2 = = -l——;’ 3 62 (47)
/-f% Kike  KiK3 K3 2K7 K1
2d
m[|d+dy 2d (1 1 da d Por 4 ——2 + (dg + d3) 17
Ky = E {l /@% + /'f_z K—g P r13 + Klm + rrriads 25 1 Figdls 23
2
2 1 1 2 _dldg dy (ds + ds) B dyds n 1 ”
+dydaky (/@_3 T /1_1) T16 + g + K1 [ . + o s | K2Kg
a d . d 2dxdy (i_i) in ((dy + ds) i)
— + — cos (doksy) — sin ((d; 2) K2
fig/‘igdg 26 2 §r6 K% ( 2 2) I'i% K9 K1 1 2
2 1 1
K2 </£_2 Y A (dir) Ka * 23 U\ Kiks | koky Kike KD
m [ 2 I (49)
Kiiiy = " {/11/-63 T10 + d3rig — dsris + P T16 p 7
1 1 2d; (1 1 dld?,,}
+ dqd3 </£1 /<53> T19 + K (/13 P 14 2"1:2’,
1
m dy dy 2 1 i) - iml Ty (50)
KM@ - E {_/igligdg 26 /'ig/'i% "6 21 (/12 K3 16 /‘ig /'i%
1 1 d% (dy + 3ds)  dzd? (i B i) }
+dadzky (H—2 - ;3) Ty + 6r2 + ks \rs o
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m [ ds 2dy (1 1 d3
Kot — =TT — | — = — | — 5T
d K3 K3 \ K2 K3 K2R3
1 2 1 1 dyd?
+ T26 — 7“11—d2d3(———)7‘19 223
KaRs3 K2K3 K3 Ko 2K3

(51)

(52)

The time-varying functions r; (t), i = 1,...,26, in (32)-(52) are introduced to simplify the calcula-

tions. They are defined as follows

1
r1 = dy cos (d1k1) — — sin (dy K1)
1

1
ro = dy cos (daka) — — sin (dak2)
2

1
rg = d3 cos (dzk3) — — sin (d3k3)
3

ry = [cos (dk3) — cos (d1k1 — dk3)]

K1K3

r5 = 1 — cos (daka)

1
o= — [cos ((di + d2) k2 — dk3) — cos (dika — dks3)]
2

r7 = 1 — cos (d3ks)

re = 1 5 [sin (dikz) — sin ((dy + d2) k)]

L sin (di (k1 — 2)) — sin (dus — (dy + da) o)

Tg =
R1K5
T = 5 [sin (dik1 — (di + d2) k3) — sin (dyky — dks3)]
. :
1 = o ,‘i2 [SlIl (dll'ig — (dl + dg) /'63) — Sin (dll'ig — dl-ig)
23
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(57)

(58)

(63)



Ty = /@ig [sin ((dy + d2) k3) — sin (dk3)]

1
ry = — [cos (dyk2) — cos ((dy + da) K2)]
2

T = /%% [cos ((dy + dg) k3) — cos (dk3)]

715 = —5—5 [€0s (dik1 — (d1 + da) K3) + cos (dik1 — dks)]
K2K3
1 . ]
r16 = — [sin ((d1 + d3) k3) — sin (dk3)]
7 = —5— [cos (i + do) ks — dikir) — cos (di (k2 — K1))]
R1k3

1
18 = —5—5 [cos (dk3) + cos ((di + dz) K3)]
kik3

1 . .
o= [sin (dk3) + sin ((dy + d2) K3)]
3
1 .
Tog = — (d2 —+ d3) COS (dl/ﬂ?l) + dl + d2 + d3 - /ﬂ'/_ S (dl/ﬂ;l)
1

1
ro1 = —dsz cos (daka) + dy + d3 — . sin (dakz)

1 .
To9 = d3 — /<;_ S1n (d3/€3)
3

Tog = [cos ((d1 + dg) ko) — cos (d1k1 — (d1 + d2) Ka)]
R1K9
do +d
Toy = — + s [cos (dy (K1 — Ka)) — cos (dyk2)]
R1K9
To5 = [cos (d1k1 — (dy + d2) K3) — cos ((dy + d2) K3)]
KR1Rk3
d

rag = —— [cos (dika — (di + da) Kz) — cos (di + da) (k2 — Ka)] .

RoR3
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(71)

(72)

(73)

(74)



B The Entries of the Centripetal-Coriolis Matrix

The elements of the centripetal-coriolis matrix V' (g, ¢) are defined as follows

OK;; . OK;,;, . OK;; . OK; ;
V é dldl d dldl d dldl d dldl .
1 6d1 1 6d2 2+ 6d3 3t 8%1 =

0K i - 0K ; ; . oK ; . oK. : .

4 dids dads didy dids
Via ody 2 od, + By + od,
+8Kd1d2 oy 4+ 8Kd1d2 oo — aKd B 8Kd

2Rl - 2k -

8&1 ! 8/432 2 3d1 = 8d1 "2
0K ; ; . 0K ; ; . 0K ; ; . 0K ; ; .
V é dldgd _ dgdgd dldld dldgd
18 ads @ od, @1 "ad, T o, @
6Kd'2d3 . 6Kd'd 6Kdd 8Kd - 8Kd' -
_7d 143 » 143 . 3kl ;. T~ dgfRa
6d1 2T 8%1 K 8/@3 " adl i 6d1 "2
0K ; . 0K 0K ; ; . 0K ; . .
A dif1 » A1R1 - didy di1k1
A - d d
Ve o T ad, T o, T T ad, @
0K, . 0K, 0K, 0K,
K d 1K1 1K1 _ K1K3 -
Tod, T ok, 2 ok T Tad,
0K ; . 0K, 0K ; . . 0K ; . .
V é diko - _ K2K2 - dlnzd dll-igd
15 6/‘62 2 6d1 fiz + 6d2 2+ 8d3 3
aKdlfiz . 8Kcz1f%2 . 6Kfi1f%2 . 6K/i2f%3 .
o T Tk, 0T Tod, T od,
0K ; . 0K,..; 0K; ... O0K; . . 0K ; . 0K ; .. . 0K ; .. .
A diks - f3ks - d1k3 dik3 difk3 - dok3 d3ks
A - d d - dy — d
V6= s ™ ad, P oy, 2T ady B ok, T od, 2T ag, @
OK; ; . OK; ., . O0K;,; . O0K;, 0K ; .
V é dldzd _ didy d d2d2d doky - doko -
2500 T Tad, T ad, 2T Tad, T T ad,
OK; . . O0K;; . O0K;., . O0K;;
V é d2d2d d2d2d d2d2d dads -
22 6d1 ! + 6d2 2 * 6d3 3 * 8/12 2
0K ; ; . oK ; ; . 0K ; ; . 0K ; ; . 0K ; ; . 0K ; ; .
V é d2d3d - d3d3d d2d2d d1d2d d2d3d - d1d3d
2 ads ® 7 Tod, T Tady T Tds T Tad, T Tody
OK j, 4, . 0K j, i, . OK ., . OK v, . 0K, .
+ 8:‘12 & 8:‘13 s = 8d2 e 8d2 2 8d2 &
0K ; . 0K, 0K ; . . K; .
V é ﬂ PR Kik1 » dafa d dok1 -
2 o T ad, T Tad, P ok,
8Kd2~1 aKdldz ] 6Kd i1 g 0K,
k1 - di — mld - K1R2 -
* 8/@, fis + 8%1 ! 6d2 ! 6d2 2
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(86)

(87)
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0K, 0K ; 0K

. 0K ; ; . o0K; . . . L
Vor 2 dakg - d2d2d d2l€2d daka ide 7 d1ka
2 852 2 8d2 2+ 852 2+ 8d3 3t 853 fis + 852 dl 8d2 dl
0K ; . K- . OK; . . oK . .
V é doks - _ K3K3 - dgl{gd daks3
26 6/‘63 3 6(12 3 * 6(11 ! * 8d3 d3
OK iy . Oy i — 0K, i iy OKears .
6/‘%2 6(12 6(12 6(12 2
OK; ; . OK;: . O0OK;; . OK;; . O0K;. 0K ; .
Vay 2 d1d3d _ didy d d3d3d dzdsd dsR1 . d3kg .
T od T Tad, T ad BT ad, 2T Tad, T Taa,
0K, . . OK;,, . O0K,,. OK;, .
V- A dads dy — dada d dsds d dids d
» ady 7 Tods 27 Tad, P o,
_aKdldz dl + 8Kd31%:1 . aKdgf%:g . aKdgf%:g, P
adg 3d2 3d2 ad2 ’
OK;: . OK;; . OK;; . OK;;
V é d3d3d d3d3d d3d3d dsds -
BT 0d U Tod, T Tady BT om
oK . 0K, ; 0K ; . OK; ; . O0K;. . O0K;. . 0OK. .
V é dsk1 KR1K1 - dski - dldgd _ dlﬁld _ dokq o KR1K2 -
3 851 & 8d3 fnt+ 8:‘13 fis + 8/11 ! 8d3 ! 8d3 d2 8d3 i
oK ;. . 0K, 0K ;. . OK;. . OK;; . OK;. . OK...
V é dsko - _ K2K2 dsko - _ di ko d dads _ doko o K2K3 -
3 852 i 8d3 fz + 8:‘13 s 8d3 1+ 8/12 d2 8d3 d2 8d3 s
0K ; . K- . oK ; . 0K . .
V é dsks - _ K3K3 - dsds dsks3
& ey 0T ody P ok BT ag, O
8Kdd . 6Kd . 8Kdd . 6Kd . 0Ky, ;
+ 1ds g _ 1l€3d 243 7 2l€3d_ K1K3 »
6/13 ! 6(13 1+ 6/13 2 6(13 2 6d3 M
0K ; . . 0K ; ; . 0K ;. 0Ky,
Vi A dlmd o dldld R1K1 » k1R3 -
4 6d1 ! 8/11 ! + 6(11 & + 6(11 3
OK; . . 0K, OK; . . OK;. . OKi. . 0K,
V é dglild Rik1 .. d1d2d dl"?ld dok1 K1K2 -
2 8d2 2+ 6(12 = 6/‘61 1+ 8d2 1 6(11 dl + 6(12 i
0K; . . OK... OK; ; . OK,; . .
V é dglild K1R1 » d1d3d dik1
43 8d3 3 + 8d3 = 6/‘61 ! + 8d3 dl
0Ky, . 0K, . 0Ki. . 0K,
K d 3Ii1d 3Iild K1k -
+ Bds o+ ad, 1+ Bd, o + Bds Ka
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(95)
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1~1 1~1 1 1,%3 (100)

Vi & Oty D+ Cpnt o Sy Zplbind, - Spbisdy 1 Sk, o
Vi & Sy S+ Sy S, o

TR R S
0K ; . . N 0Ky . OKgi, . 8l{k2k3k@ (103)

Var = =5y~ it g Rt TRt

0 2 21‘-12 . a/zwlz dl + 8;1 2d1 + agz 2d1 (104)
2 2 1

0K . . K; . .
V é do ko d - dodo d
52 8d2 2 852 2+ adg

0K j, i,
22.d
852 2

0Ky, . 0K OK; . .
V £ 3R2d K2K2 - 1/'€2d _ 105
53 dds 3+ dds kg + dds 1 (105)
aKdﬂCz 7 adefw 7 6Kt13/%2 7 aKﬁwks .
Tod, 2T o, BT e, 2T Tag, M

aK’.ilk/Z . aKI'ill"ﬁ)l . 6K'1k1 . 6K‘1f€2 . 6K‘2k1 . 8K’~£1,-€2 . 8K,'4;1,;;2 .
‘/54 = 8/11 i 8/12 i 822 dl + 821 dl B 822 d2 * 6(12 d2 * 8d3 d3 (106)

0Ky o+ OKiyiy o OKppry 5 0Ky 0K,
V é Iigﬁ:zd KR2K2 d KR2K2 d KoK - K2K2 - 107
%5 6(11 ! + 6(12 2+ 8d3 3_'_ 8/12 F&2+ 6/13 3 ( )

0Kk, . 0K ipicy ;
2 —— K3 -+ K9 85; 2 K1+ 8dz 3d2 (108)
0K, 0K, 0K, . OK,,. .
=3 352
+ 853 853 852 2+ 8/13 3

0K .. - 0K..; oK; . . OK; . .
Vi A dmsd AK3R3 - dgngd dgl{gd 109
61 1+ ad, K3 + ad, 2+ ad, 3 (109)

8K,.‘€1,:€3 /.'{/1 —I— 8[8{22:‘%3 /‘%2 (110)
2

oK ; . . 0K... oK ; . .
V. A dzl@sd A3R3 - dmgd
2= 5, 2T a, = Tad, T o4,

0K, .. . K;: . OK.. oK & .

Vi A dgﬂgd o d3d3d R3R3 - dldgd 111

63 adg 3 8:‘63 3+ adg 3 8/13 ! ( )
OK;. . O0K;; . OK;. . 0K;i. . 0K,

163 7 2d3 2hs j 3h3 J K1R3 .

! 2T 5d, 2T Tod, 2T Taq, ™

6d3 6/13
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Vv A Kkik3 o kik1 - 1R1 7 LLED B 2R g 3R1 g F1ks 7 112
64 8&1 = 8&3 = 8&3 L+ 8&1 ! 8&3 2 8&3 3t adl ! ( )
OK s OK i 0Ky, 0K, ;. :
A K2R3 - KoK KR1K2 - d1/€2
2 — — - —am 11
‘/65 8/@ 2 8/@;», 2 6/‘63 ! 6/’63 dl ( 3)
0K, s  OKj. o OKj,. . 0K  OKipes ;
_ Lo d 2'i3d _ 3K2 d K2K3 d Hzli3d
6/’63 2+ 6/‘62 2 6/‘63 3+ 6d1 1+ 8d3 3
OKjres o OKjgig 3 OKigiy o 0Ky
é R3K3 d K3K3 d KR3RK3 d K3RK3 - ) 114
Vs 5, & + ad, @ + ad, + Ors K3 (114)

The proof for the skew-symmetry property is presented in the next Appendix.

C Skew-Symmetry Property

For (M — 2V> to be skew-symmetric, the following should be satisfied

(M . 2v) n (M - 2V)T — Ogeg (115)

where 0, € R6%6 is a matrix of zeros. Since the inertia matrix is symmetric, the following can be
obtained

M=V+VT (116)

where (115) is utilized. From (116), for (M - 2V) to be skew-symmetric the following conditions
for diagonal and off-diagonal elements should be satisfied

M;=2V; , i=1,..,6 (117)

My =Vij+ Vi, j=1,..,(0-1). (118)

The time derivatives of the diagonal entries of the inertia matrix are given as follows

My, =2 (32(3141 dy + 82(5;41 dy + 82(5;41 ds + 8?21‘1'1 /%1) (119)
Moy = 2 (agjj@ dy + 8?5242 dy + 8?5242 ds + 82{;5’;42 &2) (120)
Msz =2 (ag(;jds di + ag(jzds ds + ag(jzds ds + 6;2;3 Rs) (121)
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- OKppry ;  OKpgiy :  OKppiny 5+ OKpy: OK .y
Mo — 2 262 Fiafio faka kaka . fioka - 19
5 ( o, "t od, T ady B ok, 2T o ’“”) (123)
- SR Y)Y A
Mew — 92 3K3 3K3 3K3 3k3 ‘ 194
o < od, Yt ody, T Tad, BT ok, "3) (124)

After comparing (119)-(124) with (79), (86), (93), (100), (107), and (114), it is clear that (117) is
satisfied. The time derivatives of the off-diagonal entries of the inertia matrix are given as follows

. oK ; ; . oK ; ; . 0K ; ; . 0K ; ; 0K ; ;
Mo = =5q, 2+ g, et g+ T B+ g R 129
. 6Kdd . 6Kd‘d' . 6Kdd . 6Kdd 8Kdd
M — 1 Sd 1 Sd 1 Sd 14a3 » 143 - 126
13 8d1 ! + 8d2 2 + 8d3 3 + 6/‘61 i + 6/’63 w3 ( )
. 0K . - 0K . - 0K .. . 0K , 0K , 0K ,
M — lﬁ/ld l’ild l’ild 1R1 1R1 1R1 12
4S50 T o0, P a0 BT Tk T ok, 2 ok, (127)
. 0K . - 0K ... - 0K .. - 0K , 0K , 0K ,
M — IK/Qd l’izd l’izd 1R2 1R2 1R2 12
5700, T a0, 2T Tads B Tk T ok, 2 ok, (128)
Afon — 8Kd“'“3d N 8Kdl"’“3d N aKdlkScZ N 5Kd-1k3/€ N 5Kd-1k3/€ (129)
Y79, YT ady 7 ads 0 Ok Oky 0
. 0K ;. - 0K ;. - 0K ;. - 0K ; 0K ;
M — 2 Sd 2 Sd 2 Sd 2A3 - 203 - 130
23 8d1 ! + 8d2 2 + 8d3 3 + 6/‘62 2 + 6/’63 3 ( )
M24 = aKdﬁl d1 + aKdW.ﬂ d2 + 6Kd2'.ﬂ d3 + 6Kd2k1 K1+ 6Kd2k1 Ko + 6Kd2k1 K3 (131)
6(11 8d2 8d3 8/11 8/12 8/@,
. 0K . - 0K .. - 0K, .. . 0K, , 0K, ,
M — 2E2d 2/i2d 2/i2d 2K2 - 2K2 - 1 2
=50, T dy, P Td, BT ok, 2T ok 2 (132)
. 0K .. - 0K .. - 0K, ... - 0K, , 0K, ,
M — 2K3 d 2/i3d 2’i3d 2R3 » 2R3 1
%= 50, T d, P d, B ok, 2T ok P (133)
Ko — aKdSkld' N 8Kd3k1d. N 6Kd$"'“d N 5Kd-3k1/€ N 5Kd-3k1/€ (134)
BT 0d, T ady P ddy 0 Ok Okg C
M _ 8Kd3k2d- n 8Kd3k2d- n 6Kd3k2d n 6Kd3i:2/:€ n 6Kd3i:2/:€ (135)
3 6(11 ! 8d2 2 8d3 3 8/12 2 6/13 3
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Ny = s O Oy Oy (136)
dd, Ody dd3 Ok3
My = 6?—2’%1 + 6?;;‘””2 dy + agg;‘” ds + 62(:11’” Fop + 62(:;’” fop + 62(:;‘””2 s (137)
My = algz‘“?’ dy + m;;;‘“?’ dsy + ag;;‘“3 ds + 6?;11"“3 foy + 6?;;‘””3 o3 (138)
Mg = agz“ dy + 8[;;:"3 dy + aggz’” ds + 815:;“ oo + 8[5:;"“3 3. (139)

After comparing (125)-(139) with the corresponding entries of V' (g, ¢), then it is clear that (118) is
satisfied.

26



